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ABSTRACT

When applying sparse representation techniques to images,
the standard approach is to independently compute the rep-
resentations for a set of overlapping image patches. This
method performs very well in a variety of applications, but
the independent sparse coding of each patch results in a rep-
resentation that is not optimal for the image as a whole. A
recent development is convolutional sparse coding, in which
a sparse representation for an entire image is computed by re-
placing the linear combination of a set of dictionary vectors
by the sum of a set of convolutions with dictionary filters. A
disadvantage of this formulation is its computational expense,
but the development of efficient algorithms has received some
attention in the literature, with the current leading method ex-
ploiting a Fourier domain approach. The present paper intro-
duces a new way of solving the problem in the Fourier do-
main, leading to substantially reduced computational cost.

Index Terms— Sparse Representation, Sparse Coding,
Convolutional Sparse Coding, ADMM

1. INTRODUCTION

Over the past 15 year or so, sparse representations [1] have
become a very widely used technique for a variety of prob-
lems in image processing. There are numerous approaches to
sparse coding, the inverse problem of computing a sparse rep-
resentation of a particular signal or image vector s, one of the
most widely used being Basis Pursuit DeNoising (BPDN) [2]

argmin
x

1

2
‖Dx− s‖22 + λ ‖x‖1 , (1)

whereD is a dictionary matrix, x is the sparse representation,
and λ is a regularization parameter. When applied to images,
this decomposition is usually applied independently to a set of
overlapping image patches covering the image; this approach
is convenient, but often necessitates somewhat ad hoc subse-
quent handling of the overlap between patches, and results in
a representation over the whole image that is suboptimal.
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More recently, these techniques have also begun to be ap-
plied, with considerable success, to computer vision problems
such as face recognition [3] and image classification [4, 5, 6].
It is in this application context that convolutional sparse rep-
resentations were introduced [7], replacing (1) with
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{xm}
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dm ∗ xm − s

∥∥∥∥∥
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+ λ
∑
m

‖xm‖1 , (2)

where {dm} is a set of M dictionary filters, ∗ denotes convo-
lution, and {xm} is a set of coefficient maps, each of which
is the same size as s. Here s is a full image, and the {dm}
are usually much smaller. For notational simplicity s and xm
are considered to be N dimensional vectors, where N is the
the number of pixels in an image, and the notation {xm} is
adopted to denote allM of the xm stacked as a single column
vector. The derivations presented here are for a single image
with a single color band, but the extension to multiple color
bands (for both image and filters) and simultaneous sparse
coding of multiple images is mathematically straightforward.

The original algorithm proposed for convolutional sparse
coding [7] adopted a splitting technique with alternating
minimization of two subproblems, the first consisting of the
solution of a large linear system via an iterative method,
and the other a simple shrinkage. The resulting alternating
minimization algorithm is similar to one that would be ob-
tained within an Alternating Direction Method of Multipliers
(ADMM) [8, 9] framework, but requires continuation on the
auxiliary parameter to enforce the constraint inherent in the
splitting. All computation is performed in the spatial domain,
the authors expecting that computation in the Discrete Fourier
Transform (DFT) domain would result in undesirable bound-
ary artifacts [7]. Other algorithms that have been proposed for
this problem include coordinate descent [10], and a proximal
gradient method [11], both operating in the spatial domain.

Very recently, an ADMM algorithm operating in the DFT
domain has been proposed for dictionary learning for con-
volutional sparse representations [12]. The use of the Fast
Fourier Transform (FFT) in solving the relevant linear sys-
tems is shown to give substantially better asymptotic perfor-
mance than the original spatial domain method, and evidence
is presented to support the claim that the resulting boundary



effects are not significant.
The present paper describes a convolutional sparse coding

algorithm that is derived within the ADMM framework and
exploits the FFT for computational advantage. It is very sim-
ilar to the sparse coding component of the dictionary learning
algorithm of [12], but introduces a method for solving the
linear systems that dominate the computational cost of the al-
gorithm in time that is linear in the number of filters, instead
of cubic as in the method of [12].

2. ADMM ALGORITHM

Rewriting (2) in a form suitable for ADMM by introducing
auxiliary variables {ym}, we have

argmin
{xm},{ym}
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‖ym‖1

such that xm − ym = 0 ∀m , (3)

for which the corresponding iterations (see [8, Sec. 3]), with
dual variables {um}, are

{xm}(k+1) = argmin
{xm}
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{ym}(k+1) = argmin
{ym}

λ
∑
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‖ym‖1 +

ρ

2

∑
m

∥∥∥x(k+1)
m − ym + u(k)

m
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2

(5)

u(k+1)
m = u(k)

m + x(k+1)
m − y(k+1)

m . (6)

Subproblem (5) is solved via shrinkage/soft thresholding
as

y(k+1)
m = Sλ/ρ

(
x(k+1)
m + u(k)

m

)
, (7)

where

Sγ(u) = sign(u)�max(0, |u| − γ) , (8)

with sign(·) and |·| of a vector considered to be applied
element-wise. The computational cost is O(MN).

The only computationally expensive step is solving (4),
which is of the form
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‖xm − zm‖22 . (9)

2.1. DFT Domain Formulation

An obvious approach is to attempt to exploit the FFT for ef-
ficient implementation of the convolution via the DFT convo-
lution theorem. (This does involve some increase in memory

requirement since the dm are zero-padded to the size of the
xm before application of the FFT.)

Define linear operators Dm such that Dmxm = dm ∗
xm, and denote the variables Dm, xm, s, and zm in the DFT
domain by D̂m, x̂m, ŝ, and ẑm respectively. It is easy to show
via the DFT convolution theorem that (9) is equivalent to
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with the {xm}minimizing (9) being given by the inverse DFT
of the {x̂m} minimizing (10). Defining

D̂ =
(
D̂0 D̂1 . . .

)
, x̂ =

 x̂0

x̂1

...

 , ẑ =

 ẑ0
ẑ1
...

 , (11)

this problem can be expressed as

argmin
x̂

1

2

∥∥∥D̂x̂− ŝ
∥∥∥2
2
+
ρ

2
‖x̂− ẑ‖22 , (12)

the solution being given by

(D̂HD̂ + ρI)x̂ = D̂H ŝ+ ρẑ . (13)

2.2. Independent Linear Systems

Matrix D̂ has a block structure consisting of M concatenated
N × N diagonal matrices, where M is the number of filters
andN is the number of samples in s. D̂HD̂ is anMN×MN
matrix, but due to the diagonal block (not block diagonal)
structure of D̂, a row of D̂H with its non-zero element at col-
umn n will only have a non-zero product with a column of D̂
with its non-zero element at row n. As a result, there is no
interaction between elements of D̂ corresponding to differ-
ent frequencies, so that (as pointed out in [12]) one need only
solve N independent M × M linear systems to solve (13).
Bristow et al. [12] do not specify how they solve these linear
systems (and their software implementation was not available
for inspection), but since they rate the computational cost of
solving them asO(M3), it is reasonable to conclude that they
apply a direct method such as Gaussian elimination. This can
be very effective [8, Sec. 4.2.3] when it is possible to pre-
compute and store a Cholesky or similar decomposition of the
linear system(s), but in this case it is not practical unless M
is very small, having an O(M2N) memory requirement for
storage of these decomposition. Nevertheless, this remains
a reasonable approach, the only obvious alternative being an
iterative method such as conjugate gradient (CG).

A more careful analysis of the unique structure of this
problem, however, reveals that there is an alternative, and
vastly more effective, solution. First, define the mth block
of the right hand side of (13) as

r̂m = D̂H
m ŝ+ ρẑm , (14)



so that  r̂0
r̂1
...

 = D̂H ŝ+ ρẑ . (15)

Now, denoting the nth element of a vector x by x(n) to avoid
confusion between indexing of the vectors themselves and se-
lection of elements of these vectors, define

vn =

 x̂0(n)
x̂1(n)

...

 bn =

 r̂0(n)
r̂1(n)

...

 , (16)

and define an as the column vector containing all of the non-
zero entries from column n of D̂H , i.e. writing

D̂ =


d̂0,0 0 0 . . . d̂1,0 0 0 . . .

0 d̂0,1 0 . . . 0 d̂1,1 0 . . .

0 0 d̂0,2 . . . 0 0 d̂1,2 . . .
...

...
...

. . .
...

...
...

. . .

 (17)

then

an =

 d̂∗0,n
d̂∗1,n

...

 , (18)

where ∗ denotes complex conjugation. The linear system to
solve corresponding to element n of the {xm} is

(ana
H
n + ρI)vn = bn . (19)

The critical observation is that the matrix on the left hand
side of this system consists of a rank-one matrix plus a scaled
identity. Applying the Sherman-Morrison formula

(A+ uvH)−1 = A−1 − A−1uvHA−1

1 + uHA−1v
(20)

gives
(ρI + aaH)−1 = ρ−1

(
I − aaH

ρ+ aHa

)
, (21)

so that the solution to (19) is

vn = ρ−1
(
bn −

aHn bn
ρ+ aHn an

an

)
. (22)

The only vector operations here are inner products,
element-wise addition, and scalar multiplication, so that this
method is O(M) instead of O(M3) as in [12]. The cost
of solving N of these systems is O(MN), and the cost of
the FFTs is O(MN logN). Here it is the cost of the FFTs
that dominates, whereas in [12] the cost of solving the DFT
domain linear systems dominates the cost of the FFTs.

This approach can be implemented in an interpreted lan-
guage such as Matlab in a form that avoids explicit iteration
over the N frequency indices by passing data for all N in-
dices as a single array to the relevant linear-algebraic routines
(commonly referred to as vectorization in Matlab terminol-
ogy). Some additional computation time improvement is pos-
sible, at the cost of additional memory requirements, by pre-
computing aHn /(ρ+ aHn an) in (22).

2.3. Algorithm Summary

The proposed algorithm is summarized in Alg. 1. The stop-
ping criteria are those discussed in [8, Sec. 3.3], together with
an upper bound on the number of iterations. The options for
the ρ update are (i) fixed ρ (i.e. no update), (ii) the adaptive
update strategy described in [8, Sec. 3.4.1], and the multi-
plicative increase scheme advocated in [12].

Input: image s, filter dictionary {dm}, parameters λ, ρ
Precompute: FFTs of {dm} → {D̂m}, FFT of s→ ŝ
Initialize: {ym} = {um} = 0
while stopping criteria not met do

Compute FFTs of {ym} → {ŷm}, {um} → {ûm}
Compute {x̂m} using the method in Sec. 2.2
Compute inverse FFTs of {x̂m} → {xm}
{ym} = Sλ/ρ ({xm}+ {um})
{um} = {um}+ {xm} − {ym}
Update ρ if appropriate

end
Output: Coefficient maps {xm}

Algorithm 1: Summary of proposed ADMM algorithm

The computational cost of the algorithm components is
O(MN logN) for the FFTs, orderO(MN) for the proposed
linear solver, and O(MN) for both the shrinkage and dual
variable update, so that the cost of the entire algorithm is
O(MN logN), dominated by the cost of FFTs. In contrast,
the cost of the algorithm proposed in [12] is O(M3N) (there
is also an O(MN logN) cost for FFTs, but it is dominated
by the O(M3N) cost of the linear solver), and the cost of the
original spatial-domain algorithm [7] is O(M2N2L), where
L is the dimensionality of the filters.

3. DICTIONARY LEARNING

The extension of (2) to learning a dictionary from training
data involves replacing the minimization with respect to xm
with minimization with respect to both xm and dm. The op-
timization is invariably performed via alternating minimiza-
tion between the two variables, the most common approach
consisting of a sparse coding step followed by a dictionary
update [13]. The commutativity of convolution suggests that
the DFT domain solution of Sec. 2.1 can be directly applied
in minimizing with respect to dm instead of xm, but this is
not possible since the dm are of constrained size, and must be
zero-padded to the size of the xm prior to a DFT domain im-
plementation of the convolution. If the size constraint is im-
plemented in an ADMM framework [14], however, the prob-
lem is decomposed into a computationally cheap subproblem
corresponding to a projection onto to constraint set, and an-
other subproblem that can be efficiently solved by extending
the method in Sec. 2.1. This iterative algorithm for the dictio-
nary update can alternate with a sparse coding stage to form a



more traditional dictionary learning method [15], or the sub-
problems of the sparse coding and dictionary update algo-
rithms can be combined into a single ADMM algorithm [12].

4. RESULTS

A comparison of execution times for the algorithm (λ = 0.05)
with different methods of solving the linear system, for a set
of overcomplete 8 × 8 DCT dictionaries and the 512 × 512
greyscale Lena image, is presented in Fig. 1. It is worth em-
phasizing that this is a large image by the standards of prior
publications on convolutional sparse coding; the test images
in [12], for example, are 50×50 and 128×128 pixels in size.

The Gaussian elimination solution is computed using a
Cholesky decomposition (since it is, in general, impossible
to cache this decomposition, it is necessary to recompute it
at every solution), as implemented by the Matlab mldivide
function, and is applied by iterating over all frequencies in the
apparent absence of any practical alternative.

The conjugate gradient solution is computed using two
different relative error tolerances. A significant part of the
computational advantage here of CG over the direct method
is that it is applied simultaneously over all frequencies.

The two curves for the proposed solver based on the
Sherman-Morrison formula illustrate the significant gain
from an implementation that simultaneously solves over all
frequencies and that the relative advantage of doing so de-
creases with increasing M .
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Fig. 1. A comparison of execution times for 10 steps of the
ADMM algorithm for different methods of solving the lin-
ear system: Gaussian elimination (GE), Conjugate Gradient
with relative error tolerance 10−5 (CG 10−5) and 10−3 (CG
10−3), and Sherman-Morrison implemented with a loop over
frequencies (SM-L) or jointly over all frequencies (SM-V).

The performance of the three ρ update strategies dis-

cussed in the previous section was compared by sparse cod-
ing a 256 × 256 Lena image using a 9 × 9 × 512 dictionary
(from [16], by the authors of [17]) with a fixed value of
λ = 0.02 and a range of initial ρ values ρ0. The resulting
values of the functional in (2) after 100, 500, and 1000 itera-
tions of the proposed algorithm are displayed in Table 1. The
adaptive update strategy uses the default parameters of [8,
Sec. 3.4.1], and the increasing strategy uses a multiplica-
tive update by a factor of 1.1 with a maximum of 105, as
advocated by [12].

In summary, a fixed ρ can perform well, but is sensitive to
a good choice of parameter. When initialized with a small ρ0,
the increasing ρ strategy provides the most rapid decrease in
functional value, but thereafter converges very slowly. Over-
all, unless rapid computation of an approximate solution is
desired, the adaptive ρ strategy appears to provide the best
performance, with the least sensitivity to choice of ρ0. This is-
sue is complex, however, and further experimentation is nec-
essary before drawing any general conclusions that could be
considered valid over a broad range of problems.

Iter.
ρ0

10−2 10−1 100 101 102 103

Fixed ρ
100 28.27 27.80 18.10 10.09 9.76 11.60
500 28.05 22.25 11.11 8.89 9.11 10.13

1000 27.80 17.00 9.64 8.82 8.96 9.71
Adaptive ρ

100 21.62 16.97 14.56 10.71 11.14 11.41
500 10.81 10.23 9.81 9.01 9.18 9.09

1000 9.44 9.21 9.06 8.83 8.87 8.84
Increasing ρ

100 14.78 9.82 9.50 9.90 11.51 15.15
500 9.55 9.45 9.46 9.89 11.47 14.51

1000 9.53 9.44 9.45 9.88 11.41 13.97

Table 1. Comparison of functional value convergence for the
same problem with three different ρ update strategies.

5. CONCLUSION

A computationally efficient algorithm is proposed for solving
the convolutional sparse coding problem in the Fourier do-
main. This algorithm has the same general structure as a pre-
viously proposed approach [12], but enables a very significant
reduction in computational cost by careful design of a linear
solver for the most critical component of the iterative algo-
rithm. The theoretical computational cost of the algorithm is
reduced from O(M3) to O(MN logN) (where N is the di-
mensionality of the data and M is the number of elements
in the dictionary), and is also shown empirically to result in
greatly reduced computation time. The significant improve-
ment in efficiency of the proposed approach is expected to
greatly increase the range of problems that can practically be
addressed via convolutional sparse representations.
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